
This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner’s written consent. © Copyright HENSOLDT AG 2022. All rights reserved. This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner’s written consent. © Copyright HENSOLDT AG 2022. All rights reserved.

un code sûr, sécurisé et robuste pour
vos applications embarquées
Automobiles et Aérospatiales
Atelier Logiciel, Paris La Défense, 27 juin 2023
Organisé par Antycip Technologies et

This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner’s written consent. © Copyright HENSOLDT AG 2022. All rights reserved.

Portefeuille Produits

Nos Métiers:
Commercialisation - Support
Technique – Intégration – Ateliers
– Formations

Outils pour les R&D’s logicielles:
Sureté Fonctionnelle –
Cybersecurité – Qualité – Test –
Efficacité Opérationnelle

Atelier Logiciel – 27 juin 2023

This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner’s written consent. © Copyright HENSOLDT AG 2022. All rights reserved.

Embarqué dans l‘Aerospace & Automotive

Similarité + Porosité

Poids croissant des exigences
réglementaires

Cybersécurité
Sureté de fonctionnement

Complexité croissante, poids croissant
du logiciel

Atelier Logiciel – 27 juin 2023

This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner’s written consent. © Copyright HENSOLDT AG 2022. All rights reserved.

Use Cases

Shift Left, Unit Testing

Dynamic and Static Testing

Functional and Non-Functional Testing

Tools in action:
• TPT on source code
• Astrée on source code
• aiT/TimeWeaver + StackAnalyzer on

object code

Atelier Logiciel – 27 juin 2023

TPT

StackAnalyzer

Astrée

aiT/TimeWeaver

AbsInt Angewandte Informatik GmbH
§ Provides advanced development tools for embedded systems, and

tools for validation, verification, and certification of safety-critical or
security-relevant software

§ Founded in February 1998 by six researchers of Saarland University,
Germany, from the group of programming languages and compiler
construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm

§ Privately held by the founders
§ 40+ employees
§ Customers from 40+ countries all over the world
§ Industries: Aerospace, Automotive, Railway, Energy

(nuclear power, wind energy), Healthcare, …

5

Automotive Software Experts

§ Vendor of TPT - a Test Automation Tooling for embedded systems and
software to perform dynamic testing

§ Provider of Testing Services (focus on Automotive)
§ Founded in 2007 by Dr. Bringmann, Dr. Lüdemann and Mr. Krämer
§ 60+ employees
§ 150+ customers – 20.000+ User, from 50+ countries all over the world
§ Industries: Automotive, Aerospace, Railway, Energy, Healthcare, …

6

This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner’s written consent. © Copyright HENSOLDT AG 2022. All rights reserved.

Agenda

• 8H30 - 9H00 Café de bienvenue

• 9H00 - 9H30 Ordre du jour, qui nous sommes, tour de table

• 9H30 - 10H30 Introduction du projet de démonstration et vérification pratique des règles MISRA C/C++ avec Astrée d'AbsInt.
Génération de cas de test, exécution de tests pour le code C/C++, résolution de la matrice de traçabilité avec TPT de
PikeTec.

• 10H30 - 10H45 Pause café, réseautage

• 10H45 - 11H30 Détection statique de bugs critiques cachés avec Astrée d'AbsInt, analyse statique de la pile et du timing avec
StackAnalyzer et TimeWeaver/aiT d'AbsInt, gestion du changement et intégration dans une CI avec TPT de PikeTec.

• 11H30 - 12H30 Démonstration pratique, hands-on

• 12H30 - 13H00 Q&R, conclusions, évaluation

Atelier Logiciel – 27 juin 2023

Round Table

AbsInt GmbH, ANTYCIP Technologies, PikeTec GmbH

Safe, secure, and robust code for

embedded applications in automotive and aerospace
Paris, June 27th 2023

Demo: Project/Code
3

OFF ON AUTO

Light Switch Position
[Input of SUT]

bright dark

Light Intensity
[Input of SUT]

Headlight
[Output of SUT]

Lights Controller

[System Under Test]

OFF ON

Demo: Project/Code
4

Lights
Controller
Behavior

Light Switch in
AUTO MODE

Switch just
changed

It is
not bright

Turn
headlight ON

It is
bright

Turn
headlight OFF

Switch is
stable

It is dark
for at least 2s

Turn
headlight ON

It is bright
for at least 3s

Turn
headlight OFF

Light Switch in
OFF MODE

Turn
headlight OFF

Light Switch in
ON MODE

Turn
headlight ON

Functional Safety
§ Demonstration of functional correctness

§ Functional requirements are satisfied
Ø Automated and/or model-based testing
Ø Formal techniques: model checking, theorem proving

§ Satisfaction of safety-relevant quality requirements
§ Compliance with the software architecture
§ No runtime errors (e.g. division by zero, overflow,

invalid pointer access, out-of-bounds array access)
§ Resource usage:

§ Timing requirements (e.g. WCET, WCRT)
§ Memory requirements (e.g. no stack overflow)

§ Robustness / freedom of interference (e.g. no corruption of content,
incorrect synchronization, illegal read/write accesses)

§ Adequate requirements coverage and structural coverage of testing
Ø Static analysis, formal technique (sound): abstract interpretation

5

REQUIRED BY
DO-178B / DO-178C /
ISO-26262, EN-50128,
IEC-61508

REQUIRED BY
DO-178B / DO-178C /
ISO-26262, EN-50128,
IEC-61508

High Level Q/A
6

Q/A

Static
Analysis Review Dynamic

Testing

White-
Box

Black-
Box

Static Program Analysis
§ Categories, depending on analysis depth:

§ Syntax-based: Coding guideline checkers (e.g. MISRA C)
§ Semantics-based

§ Unsound: Bug-finders / bug-hunters.
§ False positives: possible
§ False negatives: possible

þSound / Abstract Interpretation-based
§ False positives: possible
§ No false negatives ð Soundness

No defect missed

7

Question: Is there an error in the program?
§ False positive: answer wrongly “Yes”
§ False negative: answer wrongly “No” N

Execution Time / Stack Usage

Execution Time / Stack Usage

sound

Execution Time / Stack Usage

Exact WCET

unsound

Dynamic Testing
§ Stimulation of a running software to assess its behavior.
§ Unit tests, integration tests, system tests and acceptance tests utilize dynamic testing.
§ Software must actually be compiled and run.
§ Can be done manually or with the use of an automated process.

8

AbsInt Angewandte Informatik GmbH
§ Provides advanced development tools for embedded systems, and

tools for validation, verification, and certification of safety-critical or
security-relevant software

§ Founded in February 1998 by six researchers of Saarland University,
Germany, from the group of programming languages and compiler
construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm

§ Privately held by the founders
§ 40+ employees
§ Customers from 40+ countries all over the world
§ Industries: Aerospace, Automotive, Railway, Energy

(nuclear power, wind energy), Healthcare, …

9

Automotive Software Experts

§ Vendor of TPT - a Test Automation Tooling for embedded systems and
software to perform dynamic testing

§ Provider of Testing Services (focus on Automotive)
§ Founded in 2007 by Dr. Bringmann, Dr. Lüdemann and Mr. Krämer
§ 60+ employees
§ 150+ customers – 20.000+ User, from 50+ countries all over the world
§ Industries: Automotive, Aerospace, Railway, Energy, Healthcare, …

10

Development Process
11

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

Astrée
§ Sound static Analyzer based on Abstract Interpretation designed to

prove the absence of runtime errors and data races in C programs
§ No alarm (potential runtime error / data race) ð no such errors in the code
§ Essential for functional safety and cybersecurity

§ Reference customer: Airbus flight control software (DO-178B level A)
No false alarm on >755.000 LOC, analysis time 6h.

§ Beyond runtime errors: Taint analysis, data and control flow analysis, alias analysis, static assertions, …
§ Qualification Support Kits (QSK) enable automatic tool qualification according to ISO-26262, DO-178B/

DO-178C, IEC-61508, IEC-60880, etc. up to the highest criticality levels

§ Support for model-based code generation: Tool Box for TargetLink, model link to MATLAB/ SIMULINK
§ Open formats, full continuous verification support
§ Coding guideline checker included (RuleChecker): MISRA C/C++, SEI CERT C/C++, Ad. Autosar C++, …

12

13

Astrée Use Cases

Quality Managers SW Developers
(module verification)

SW Integrators
(integration verification)

STU-level rules System-level rules

Reporting of SW
quality metrics

Abstract Interpretation to detect
runtime errors

Abstract Interpretation to detect
concurrency defects

Abstract Interpretation to detect
unreachable code

Abstract Interpretation to
validate data and control flow

Static analysis to assess
compliance to coding standards

Taint analysis for data safety
and cybersecurity

Development Process
14

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

Astrée

15

Safety Critical
Development
according to

ISO 26262
DO 178C

32
Plug & Play
supported

technologies

1
Co-Simulation

Platform

Back-to-Back & Regression Test
Execution

ASCET
SIMULINK

TARGETLINK
C | C++

AUTOSAR
SILVER
CANoe

VTD
CarMaker
OpalRT

trace32
PLS UDE

XIL-API
dSpace

Speedgoat
INCA

+ many more

Model- /
Software- /
Processor- /
Hardware- /
in-the-loop

Automation of
Vehicle-Tests

Unit tests
Software tests

Integration tests
Hardware tests
System tests

16

Code
Structure

Equivalence
Classes

Formal
Requirements

(TPT 19)

Test DataVariants

Value Ranges

Supports joint
collaboration

Generate
Test Cases

Develop
Test Cases

Import
from Files

Representation
as Action List or Table

Representation
as Test Model

Multiple File
Support

Requirements
based

Development Process
17

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

Astrée

aiT / TimeWeaver
§ WCET results determined automatically

§ For timing predictable architectures:
static analysis (aiT)

§ For high-end multi-core architectures:
Combines static analysis and non-intrusive tracing (TimeWeaver)

§ Valid for all inputs and all execution scenarios
§ No modification of your code or tool chain required
§ Seamless integration into development tool chain
§ Automatic tool qualification, e.g. according to ISO-26262 up to ASIL-D/TCL3.
§ Application areas

§ Timing verification
§ Feedback for optimization
§ Software integration
§ Architecture exploration

18

StackAnalyzer
§ StackAnalyzer reduces risk of failures in the field: no more stack overflows.
§ Computed bounds are valid for all inputs and all execution scenarios.
§ Analyses the executable binary
§ No code instrumentation needed
§ Taking into account

§ loops and recursions,
§ inline assembly,
§ object code libraries, and
§ link-time optimizations

§ Available for numerous target architectures
§ Tool Couplings available, e.g., to

dSPACE TargetLink, Esterel SCADE.

19

Development Process
20

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

aiT / TimeWeaver Astrée

StackAnalyzer

Demo: Coding Rules
21

Check compliance to
MISRA C:2012 Ed. 3 AMD 3

Demo: Dynamic Testing
22

• Import Req.

• Testcase Creation

• Testcase Generation

• Assessments Creation

• Reporting

• Analyze

Demo: RTE/Semantic Analysis
23

Guarantee (!) absence of runtime errors
and other critical defects

Demo: WCET and Stack Analysis
24

Demo Summary
25

Astrée
• (MISRA Check)

TPT
• (Dynamic

Tests)

Astrée
• (Run Time

Error Analysis)

WCET /
Stack

Analysis

Astrée
• (MISRA Check)

TPT
• (Dynamic

Tests)

Astrée
• (Run Time

Error Analysis)

WCET /
Stack

Analysis

V1

V2

Issue
detected

✅

Demo

Hands-On Demo

15min 15min 15min 15min

15min

Automation
26

All Products are ready for use in Continous Integration Environments.

Questions and Discussions
28

29

email: info@absint.com
http://www.absint.com

The Big Picture – Code-Level Verification
30

Compilation
CompCert/

AbsInt

Abstract Interpretation
No run-time errors
No data races
Static functional assertions
(Astrée/AbsInt)

Static Analysis for Coding Guidelines
MISRA C/C++, CERT, CWE, C Secure, …
(Astrée/AbsInt)

Testing
Model Checking
Theorem Proving
functional correctness

Abstract Interpretation
Worst-case execution time analysis (aiT/AbsInt)
No stack overflows (StackAnalyzer/AbsInt)

Source Code
Executable

Machine Code

Testing
(TPT/PikeTec)

Hybrid WCET Analysis
(TimeWeaver/AbsInt)

Demo: Taint Analysis
31

