

un code sûr, sécurisé et robuste pour vos applications embarquées Automobiles et Aérospatiales

Atelier Logiciel, Paris La Défense, 27 juin 2023

Organisé par Antycip Technologies et

Detect and Protect

Portefeuille Produits

Atelier Logiciel – 27 juin 2023

Nos Métiers:

Commercialisation - Support Technique – Intégration – Ateliers – Formations

Outils pour les R&D's logicielles:

Sureté Fonctionnelle – Cybersecurité – Qualité – Test – Efficacité Opérationnelle

Detect and Protect

This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner's written consent. © Copyright HENSOLDT AG 2022. All rights reserved

Embarqué dans l'Aerospace & Automotive

Atelier Logiciel – 27 juin 2023

Similarité + Porosité

Detect and Protect

Poids croissant des exigences réglementaires

Cybersécurité Sureté de fonctionnement

Complexité croissante, poids croissant du logiciel

Use Cases Atelier Logiciel – 27 juin 2

Atelier Logiciel – 27 juin 2023

Shift Left, Unit Testing

Dynamic and Static Testing

Functional and Non-Functional Testing

Tools in action:

- TPT on source code
- Astrée on source code
- aiT/TimeWeaver + StackAnalyzer on object code

Detect and Protect

This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner's written consent. © Copyright HENSOLDT AG 2022. All rights reserved.

AbsInt Angewandte Informatik GmbH

- Provides advanced development tools for embedded systems, and tools for validation, verification, and certification of safety-critical or security-relevant software
- Founded in February 1998 by six researchers of Saarland University, Germany, from the group of programming languages and compiler construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm
- Privately held by the founders
- 40+ employees
- Customers from 40+ countries all over the world
- Industries: Aerospace, Automotive, Railway, Energy (nuclear power, wind energy), Healthcare, ...

Automotive Software Experts

- Vendor of TPT a Test Automation Tooling for embedded systems and software to perform dynamic testing
- Provider of Testing Services (focus on Automotive)
- Founded in 2007 by Dr. Bringmann, Dr. Lüdemann and Mr. Krämer
- 60+ employees
- 150+ customers 20.000+ User, from 50+ countries all over the world
- Industries: Automotive, Aerospace, Railway, Energy, Healthcare, ...

Agenda Atelier Logiciel – 27 juin 2023

- 8H30 9H00 Café de bienvenue
- 9H00 9H30 Ordre du jour, qui nous sommes, tour de table

- 9H30 10H30 Introduction du projet de démonstration et vérification pratique des règles MISRA C/C++ avec Astrée d'AbsInt. Génération de cas de test, exécution de tests pour le code C/C++, résolution de la matrice de traçabilité avec TPT de PikeTec.
- 10H30 10H45 Pause café, réseautage
- 10H45 11H30 Détection statique de bugs critiques cachés avec Astrée d'AbsInt, analyse statique de la pile et du timing avec StackAnalyzer et TimeWeaver/aiT d'AbsInt, gestion du changement et intégration dans une CI avec TPT de PikeTec.
- 11H30 12H30 Démonstration pratique, hands-on
- 12H30 13H00 Q&R, conclusions, évaluation

Detect and Protect

This document and its content is the property of HENSOLDT AG. It shall not be communicated to any third party without the owner's written consent. © Copyright HENSOLDT AG 2022. All rights reserved.

Safe, secure, and robust code for embedded applications in automotive and aerospace

Paris, June 27th 2023

AbsInt GmbH, ANTYCIP Technologies, PikeTec GmbH

Demo: Project/Code

PIKETEC

Functional Safety

- Demonstration of functional correctness
 - Functional requirements are satisfied
 - Automated and/or model-based testing
 - Formal techniques: model checking, theorem proving
- Satisfaction of safety-relevant quality requirements
 - Compliance with the software architecture
 - No runtime errors (e.g. division by zero, overflow, invalid pointer access, out-of-bounds array access)
 - Resource usage:
 - Timing requirements (e.g. WCET, WCRT)
 - Memory requirements (e.g. no stack overflow)
 - Robustness / freedom of interference (e.g. no corruption of content, incorrect synchronization, illegal read/write accesses)
 - Adequate requirements coverage and structural coverage of testing
 - Static analysis, formal technique (sound): abstract interpretation

REQUIRED BY DO-178B / DO-178C / ISO-26262, EN-50128, IEC-61508

REQUIRED BY DO-178B / DO-178C / ISO-26262, EN-50128, IEC-61508

High Level Q/A

Static Program Analysis

- Categories, depending on analysis depth:
 - Syntax-based: Coding guideline checkers (e.g. MISRA C)
 - Semantics-based

Question: Is there an error in the program?

- False positive: answer wrongly "Yes"
- False negative: answer wrongly "No"
- Unsound: Bug-finders / bug-hunters.
 - False positives: possible
 - False negatives: possible

Sound / Abstract Interpretation-based

- False positives: possible
- No false negatives ⇒ Soundness No defect missed

Dynamic Testing

- Stimulation of a running software to assess its behavior.
- Unit tests, integration tests, system tests and acceptance tests utilize dynamic testing.
- Software must actually be compiled and run.
- Can be done manually or with the use of an automated process.

AbsInt Angewandte Informatik GmbH

- Provides advanced development tools for embedded systems, and tools for validation, verification, and certification of safety-critical or security-relevant software
- Founded in February 1998 by six researchers of Saarland University, Germany, from the group of programming languages and compiler construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm
- Privately held by the founders
- 40+ employees
- Customers from 40+ countries all over the world
- Industries: Aerospace, Automotive, Railway, Energy (nuclear power, wind energy), Healthcare, ...

Automotive Software Experts

- Vendor of TPT a Test Automation Tooling for embedded systems and software to perform dynamic testing
- Provider of Testing Services (focus on Automotive)
- Founded in 2007 by Dr. Bringmann, Dr. Lüdemann and Mr. Krämer
- 60+ employees
- 150+ customers 20.000+ User, from 50+ countries all over the world
- Industries: Automotive, Aerospace, Railway, Energy, Healthcare, ...

Development Process

Excerpt from: ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

Astrée

- Sound static Analyzer based on Abstract Interpretation designed to prove the absence of runtime errors and data races in C programs
 - No alarm (potential runtime error / data race) ⇒ no such errors in the code
 - Essential for functional safety and cybersecurity
- Reference customer: Airbus flight control software (DO-178B level A) No false alarm on >755.000 LOC, analysis time 6h.
- Beyond runtime errors: Taint analysis, data and control flow analysis, alias analysis, static assertions, ...
- Qualification Support Kits (QSK) enable automatic tool qualification according to ISO-26262, DO-178B/ DO-178C, IEC-61508, IEC-60880, etc. up to the highest criticality levels
- Support for model-based code generation: Tool Box for TargetLink, model link to MATLAB/ SIMULINK
- Open formats, full continuous verification support
- Coding guideline checker included (RuleChecker): MISRA C/C++, SEI CERT C/C++, Ad. Autosar C++, ...

Astrée Use Cases

13

Development Process

Excerpt from: ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

14

TPT

Model- / Software- / Processor- / Hardware- / in-the-loop

Automation of Vehicle-Tests

Unit tests Software tests Integration tests Hardware tests System tests

Safety Critical Development according to ISO 26262 DO 178C

TPT

PIKETEC

Development Process

Excerpt from: ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

17

aiT / TimeWeaver

- WCET results determined automatically
 - For timing predictable architectures: static analysis (aiT)
 - For high-end multi-core architectures: Combines static analysis and non-intrusive tracing (TimeWeaver)
- Valid for all inputs and all execution scenarios
- No modification of your code or tool chain required
- Seamless integration into development tool chain
- Automatic tool qualification, e.g. according to ISO-26262 up to ASIL-D/TCL3.
- Application areas

- Timing verification
- Feedback for optimization
- Software integration
- Architecture exploration

StackAnalyzer

- StackAnalyzer reduces risk of failures in the field: no more stack overflows.
- Computed bounds are valid for all inputs and all execution scenarios.
- Analyses the executable binary
- No code instrumentation needed
- Taking into account
 - loops and recursions,
 - inline assembly,
 - object code libraries, and
 - link-time optimizations
- Available for numerous target architectures
- Tool Couplings available, e.g., to dSPACE TargetLink, Esterel SCADE.

Development Process

Excerpt from: ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

20

Demo: Coding Rules

Demo: Dynamic Testing

PIKETEC

- Import Req.
- Testcase Creation
- Testcase Generation
- Assessments Creation
- Reporting
- Analyze

Demo: RTE/Semantic Analysis

Demo: WCET and Stack Analysis

Demo Summary

Automation

All Products are ready for use in Continous Integration Environments.

Questions and Discussions

email: info@absint.com http://www.absint.com

The Big Picture – Code-Level Verification

(Astrée/AbsInt)

Demo: Taint Analysis

